Toward understanding COVID-19 pneumonia: a deep-learning-based approach for severity analysis and monitoring the disease.

Journal: Scientific reports
Published Date:

Abstract

We report a new approach using artificial intelligence (AI) to study and classify the severity of COVID-19 using 1208 chest X-rays (CXRs) of 396 COVID-19 patients obtained through the course of the disease at Emory Healthcare affiliated hospitals (Atlanta, GA, USA). Using a two-stage transfer learning technique to train a convolutional neural network (CNN), we show that the algorithm is able to classify four classes of disease severity (normal, mild, moderate, and severe) with the average Area Under the Curve (AUC) of 0.93. In addition, we show that the outputs of different layers of the CNN under dominant filters provide valuable insight about the subtle patterns in the CXRs, which can improve the accuracy in the reading of CXRs by a radiologist. Finally, we show that our approach can be used for studying the disease progression in a single patient and its influencing factors. The results suggest that our technique can form the foundation of a more concrete clinical model to predict the evolution of COVID-19 severity and the efficacy of different treatments for each patient through using CXRs and clinical data in the early stages of the disease. This use of AI to assess the severity and possibly predicting the future stages of the disease early on, will be essential in dealing with the upcoming waves of COVID-19 and optimizing resource allocation and treatment.

Authors

  • Mohammadreza Zandehshahvar
    School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  • Marly van Assen
    Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr, Charleston, SC 29425-2260 (S.S.M., D.M., M.v.A., C.N.D.C., R.R.B., C.T., A.V.S., A.M.F., B.E.J., L.P.G., U.J.S.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (S.S.M., T.J.V.); Stanford University School of Medicine, Department of Radiology, Stanford, Calif (D.M.); Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (C.N.D.C.); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (R.R.B.); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany (C.T.); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany (C.T.); Siemens Medical Solutions USA, Malvern, Pa (P.S.); and Department of Emergency Medicine, Medical University of South Carolina, Charleston, SC (A.J.M.).
  • Hossein Maleki
    School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  • Yashar Kiarashi
    School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  • Carlo N De Cecco
    Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr, Charleston, SC 29425-2260 (S.S.M., D.M., M.v.A., C.N.D.C., R.R.B., C.T., A.V.S., A.M.F., B.E.J., L.P.G., U.J.S.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (S.S.M., T.J.V.); Stanford University School of Medicine, Department of Radiology, Stanford, Calif (D.M.); Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (C.N.D.C.); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (R.R.B.); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany (C.T.); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany (C.T.); Siemens Medical Solutions USA, Malvern, Pa (P.S.); and Department of Emergency Medicine, Medical University of South Carolina, Charleston, SC (A.J.M.).
  • Ali Adibi
    School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA. ali.adibi@ece.gatech.edu.