COVID-19 diagnosis by routine blood tests using machine learning.

Journal: Scientific reports
PMID:

Abstract

Physicians taking care of patients with COVID-19 have described different changes in routine blood parameters. However, these changes hinder them from performing COVID-19 diagnoses. We constructed a machine learning model for COVID-19 diagnosis that was based and cross-validated on the routine blood tests of 5333 patients with various bacterial and viral infections, and 160 COVID-19-positive patients. We selected the operational ROC point at a sensitivity of 81.9% and a specificity of 97.9%. The cross-validated AUC was 0.97. The five most useful routine blood parameters for COVID-19 diagnosis according to the feature importance scoring of the XGBoost algorithm were: MCHC, eosinophil count, albumin, INR, and prothrombin activity percentage. t-SNE visualization showed that the blood parameters of the patients with a severe COVID-19 course are more like the parameters of a bacterial than a viral infection. The reported diagnostic accuracy is at least comparable and probably complementary to RT-PCR and chest CT studies. Patients with fever, cough, myalgia, and other symptoms can now have initial routine blood tests assessed by our diagnostic tool. All patients with a positive COVID-19 prediction would then undergo standard RT-PCR studies to confirm the diagnosis. We believe that our results represent a significant contribution to improvements in COVID-19 diagnosis.

Authors

  • Matjaž Kukar
    Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
  • Gregor Gunčar
    Smart Blood Analytics Swiss SA, Chur, Switzerland.
  • Tomaž Vovko
    Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia.
  • Simon Podnar
    Division of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia. simon.podnar@kclj.si.
  • Peter Černelč
    Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
  • Miran Brvar
    Centre for Clinical Toxicology and Pharmacology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
  • Mateja Zalaznik
    Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia.
  • Mateja Notar
    Smart Blood Analytics Swiss SA, Chur, Switzerland.
  • Sašo Moškon
    Smart Blood Analytics Swiss SA, Höschgasse 25, 8008, Zurich, Switzerland.
  • Marko Notar
    Smart Blood Analytics Swiss SA, Chur, Switzerland.