Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review.

Journal: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PMID:

Abstract

PURPOSE: In radiotherapy, MRI is used for target volume and organs-at-risk delineation for its superior soft-tissue contrast as compared to CT imaging. However, MRI does not provide the electron density of tissue necessary for dose calculation. Several methods of synthetic-CT (sCT) generation from MRI data have been developed for radiotherapy dose calculation. This work reviewed deep learning (DL) sCT generation methods and their associated image and dose evaluation, in the context of MRI-based dose calculation.

Authors

  • M Boulanger
    Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
  • Jean-Claude Nunes
    Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
  • H Chourak
    Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; CSIRO Australian e-Health Research Centre, Herston, Queensland, Australia.
  • A Largent
    Developing Brain Institute, Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA.
  • S Tahri
    Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
  • O Acosta
    Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
  • R De Crevoisier
    Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
  • C Lafond
    Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
  • A Barateau
    Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.