Multi-Scale Capsule Network for Predicting DNA-Protein Binding Sites.

Journal: IEEE/ACM transactions on computational biology and bioinformatics
Published Date:

Abstract

Discovering DNA-protein binding sites, also known as motif discovery, is the foundation for further analysis of transcription factors (TFs). Deep learning algorithms such as convolutional neural networks (CNN) have been introduced to motif discovery task and have achieved state-of-art performance. However, due to the limitations of CNN, motif discovery methods based on CNN do not take full advantage of large-scale sequencing data generated by high-throughput sequencing technology. Hence, in this paper we propose multi-scale capsule network architecture (MSC) integrating multi-scale CNN, a variant of CNN able to extract motif features of different lengths, and capsule network, a novel type of artificial neural network architecture aimed at improving CNN. The proposed method is tested on real ChIP-seq datasets and the experimental results show a considerable improvement compared with two well-tested deep learning-based sequence model, DeepBind and Deepsea.

Authors

  • Qinhu Zhang
  • Wenbo Yu
    Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, And Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China.
  • Kyungsook Han
  • Asoke K Nandi
    Department of Electronic and Electrical Engineering, College of Engineering, Design and Physical Sciences, Brunel University, Uxbridge UB8 3PH, UK.
  • De-Shuang Huang