AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Chromatin Immunoprecipitation Sequencing

Showing 1 to 10 of 35 articles

Clear Filters

Predicting Transcription Factor Binding Sites with Deep Learning.

International journal of molecular sciences
Prediction of binding sites for transcription factors is important to understand how the latter regulate gene expression and how this regulation can be modulated for therapeutic purposes. A consistent number of references address this issue with diff...

Supervised learning of enhancer-promoter specificity based on genome-wide perturbation studies highlights areas for improvement in learning.

Bioinformatics (Oxford, England)
MOTIVATION: Understanding the rules that govern enhancer-driven transcription remains a central unsolved problem in genomics. Now with multiple massively parallel enhancer perturbation assays published, there are enough data that we can utilize to le...

TFscope: systematic analysis of the sequence features involved in the binding preferences of transcription factors.

Genome biology
Characterizing the binding preferences of transcription factors (TFs) in different cell types and conditions is key to understand how they orchestrate gene expression. Here, we develop TFscope, a machine learning approach that identifies sequence fea...

MLSNet: a deep learning model for predicting transcription factor binding sites.

Briefings in bioinformatics
Accurate prediction of transcription factor binding sites (TFBSs) is essential for understanding gene regulation mechanisms and the etiology of diseases. Despite numerous advances in deep learning for predicting TFBSs, their performance can still be ...

DECA: harnessing interpretable transformer model for cellular deconvolution of chromatin accessibility profile.

Briefings in bioinformatics
The assay for transposase-accessible chromatin with sequencing (ATAC-seq) identifies chromatin accessibility across the genome, crucial for gene expression regulating. However, bulk ATAC-seq obscures cellular heterogeneity, while single-cell ATAC-seq...

Integrating scRNA-seq and scATAC-seq with inter-type attention heterogeneous graph neural networks.

Briefings in bioinformatics
Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for decipherin...

ChromatinHD connects single-cell DNA accessibility and conformation to gene expression through scale-adaptive machine learning.

Nature communications
Gene regulation is inherently multiscale, but scale-adaptive machine learning methods that fully exploit this property in single-nucleus accessibility data are still lacking. Here, we develop ChromatinHD, a pair of scale-adaptive models that uses the...

CacPred: a cascaded convolutional neural network for TF-DNA binding prediction.

BMC genomics
BACKGROUND: Transcription factors (TFs) regulate the genes' expression by binding to DNA sequences. Aligned TFBSs of the same TF are seen as cis-regulatory motifs, and substantial computational efforts have been invested to find motifs. In recent yea...

DconnLoop: a deep learning model for predicting chromatin loops based on multi-source data integration.

BMC bioinformatics
BACKGROUND: Chromatin loops are critical for the three-dimensional organization of the genome and gene regulation. Accurate identification of chromatin loops is essential for understanding the regulatory mechanisms in disease. However, current mainst...

Predictive biophysical neural network modeling of a compendium of in vivo transcription factor DNA binding profiles for Escherichia coli.

Nature communications
The DNA binding of most Escherichia coli Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of in vivo DNA binding for 139 E. coli TFs us...