AIMC Topic: DNA-Binding Proteins

Clear Filters Showing 1 to 10 of 101 articles

Divergence in a eukaryotic transcription factor's co-TF dependence involves multiple intrinsically disordered regions.

Nature communications
Combinatorial control by transcription factors (TFs) is central to eukaryotic gene regulation, yet its mechanism, evolution, and regulatory impact are not well understood. Here we use natural variation in the yeast phosphate starvation (PHO) response...

TET2 gene mutation status associated with poor prognosis of transition zone prostate cancer: a retrospective cohort study based on whole exome sequencing and machine learning models.

Frontiers in endocrinology
BACKGROUND: Prostate cancer (PCa) in the transition zone (TZ) is uncommon and often poses challenges for early diagnosis, but its genomic determinants and therapeutic vulnerabilities remain poorly characterized.

TransBind allows precise detection of DNA-binding proteins and residues using language models and deep learning.

Communications biology
Identifying DNA-binding proteins and their binding residues is critical for understanding diverse biological processes, but conventional experimental approaches are slow and costly. Existing machine learning methods, while faster, often lack accuracy...

Artificial intelligence-powered prediction of AIM-2 inflammasome sequences using transformers and graph attention networks in periodontal inflammation.

Scientific reports
Periodontal inflammation is a chronic condition affecting the tissues surrounding teeth. Initiated by dental plaque, it triggers an immune response leading to tissue destruction. The AIM-2 inflammasome regulates this response, and understanding its p...

Further Development of SAMPDI-3D: A Machine Learning Method for Predicting Binding Free Energy Changes Caused by Mutations in Either Protein or DNA.

Genes
BACKGROUND/OBJECTIVES: Predicting the effects of protein and DNA mutations on the binding free energy of protein-DNA complexes is crucial for understanding how DNA variants impact wild-type cellular function. As many cellular interactions involve pro...

Computational staining of CD3/CD20 positive lymphocytes in human tissues with experimental confirmation in a genetically engineered mouse model.

Frontiers in immunology
INTRODUCTION: Immune dysregulation plays a major role in cancer progression. The quantification of lymphocytic spatial inflammation may enable spatial system biology, improve understanding of therapeutic resistance, and contribute to prognostic imagi...

DeepDBS: Identification of DNA-binding sites in protein sequences by using deep representations and random forest.

Methods (San Diego, Calif.)
Interactions of biological molecules in organisms are considered to be primary factors for the lifecycle of that organism. Various important biological functions are dependent on such interactions and among different kinds of interactions, the protei...

Deciphering the Language of Protein-DNA Interactions: A Deep Learning Approach Combining Contextual Embeddings and Multi-Scale Sequence Modeling.

Journal of molecular biology
Deciphering the mechanisms governing protein-DNA interactions is crucial for understanding key cellular processes and disease pathways. In this work, we present a powerful deep learning approach that significantly advances the computational predictio...

Geometric deep learning of protein-DNA binding specificity.

Nature methods
Predicting protein-DNA binding specificity is a challenging yet essential task for understanding gene regulation. Protein-DNA complexes usually exhibit binding to a selected DNA target site, whereas a protein binds, with varying degrees of binding sp...