Deep learning-based automatic delineation of anal cancer gross tumour volume: a multimodality comparison of CT, PET and MRI.
Journal:
Acta oncologica (Stockholm, Sweden)
PMID:
34783610
Abstract
BACKGROUND: Accurate target volume delineation is a prerequisite for high-precision radiotherapy. However, manual delineation is resource-demanding and prone to interobserver variation. An automatic delineation approach could potentially save time and increase delineation consistency. In this study, the applicability of deep learning for fully automatic delineation of the gross tumour volume (GTV) in patients with anal squamous cell carcinoma (ASCC) was evaluated for the first time. An extensive comparison of the effects single modality and multimodality combinations of computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) have on automatic delineation quality was conducted.