Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results.

Journal: Acta radiologica (Stockholm, Sweden : 1987)
Published Date:

Abstract

BACKGROUND: Automatic segmentation has recently been developed to yield objective data. Prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using radiomics has been reported.

Authors

  • Sungeun Park
    Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
  • Jung Hoon Kim
    Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. jhkim2008@gmail.com.
  • Jieun Kim
  • Witanto Joseph
    Medical IP Co., Ltd, Seoul, Republic of Korea.
  • Doohee Lee
    Medical IP Co., Ltd, Seoul, Republic of Korea.
  • Sang Joon Park
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).