AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Carcinoma, Hepatocellular

Showing 1 to 10 of 365 articles

Clear Filters

Unsupervised machine learning-based stratification and immune deconvolution of liver hepatocellular carcinoma.

BMC cancer
BACKGROUND: Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and a leading cause of cancer-related deaths globally. The tumour microenvironment (TME) influences treatment response and prognosis, yet its heterogeneity remains ...

Development of a chitosanase 3-like protein 1 assay kit and study of its application in patients with hepatocellular carcinoma.

BMC biotechnology
OBJECTIVE: The detection kit for plasma Chitinase-3-like Protein 1 was developed using the magnetic bead chemiluminescence method, in order to investigate the diagnostic value of DD, FDP, CHI3L1, AFP-L3 and PIVKA-II in hepatocellular carcinoma.

Constructing a neural network model based on tumor-infiltrating lymphocytes (TILs) to predict the survival of hepatocellular carcinoma patients.

PeerJ
BACKGROUND: Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide, and early pathological diagnosis is crucial for formulating treatment plans. Despite the widespread attention to pathology in the treatment of HCC patients,...

A prediction model based on machine learning: prognosis of HBV-induced HCC male patients with smoking and drinking habits after local ablation treatment.

Frontiers in immunology
BACKGROUND: Liver cancer, particularly hepatocellular carcinoma (HCC), is a major health concern globally and in China, possibly shows recurrence after ablation treatment in high-risk patients. This study investigates the prognosis of early-stage mal...

Gadoxetic acid-enhanced MRI for identifying cholangiocyte phenotype hepatocellular carcinoma by interpretable machine learning: individual application of SHAP.

BMC cancer
PURPOSE: Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and t...

Transformer-based deep learning for accurate detection of multiple base modifications using single molecule real-time sequencing.

Communications biology
We had previously reported a convolutional neural network (CNN) based approach, called the holistic kinetic model (HK model 1), for detecting 5-methylcytosine (5mC) by single molecule real-time sequencing (Pacific Biosciences). In this study, we cons...

Interpretable machine learning model for predicting post-hepatectomy liver failure in hepatocellular carcinoma.

Scientific reports
Post-hepatectomy liver failure (PHLF) is a severe complication following liver surgery. We aimed to develop a novel, interpretable machine learning (ML) model to predict PHLF. We enrolled 312 hepatocellular carcinoma (HCC) patients who underwent hepa...