Simplified Transfer Learning for Chest Radiography Models Using Less Data.

Journal: Radiology
Published Date:

Abstract

Background Developing deep learning models for radiology requires large data sets and substantial computational resources. Data set size limitations can be further exacerbated by distribution shifts, such as rapid changes in patient populations and standard of care during the COVID-19 pandemic. A common partial mitigation is transfer learning by pretraining a "generic network" on a large nonmedical data set and then fine-tuning on a task-specific radiology data set. Purpose To reduce data set size requirements for chest radiography deep learning models by using an advanced machine learning approach (supervised contrastive [SupCon] learning) to generate chest radiography networks. Materials and Methods SupCon helped generate chest radiography networks from 821 544 chest radiographs from India and the United States. The chest radiography networks were used as a starting point for further machine learning model development for 10 prediction tasks (eg, airspace opacity, fracture, tuberculosis, and COVID-19 outcomes) by using five data sets comprising 684 955 chest radiographs from India, the United States, and China. Three model development setups were tested (linear classifier, nonlinear classifier, and fine-tuning the full network) with different data set sizes from eight to 8. Results Across a majority of tasks, compared with transfer learning from a nonmedical data set, SupCon reduced label requirements up to 688-fold and improved the area under the receiver operating characteristic curve (AUC) at matching data set sizes. At the extreme low-data regimen, training small nonlinear models by using only 45 chest radiographs yielded an AUC of 0.95 (noninferior to radiologist performance) in classifying microbiology-confirmed tuberculosis in external validation. At a more moderate data regimen, training small nonlinear models by using only 528 chest radiographs yielded an AUC of 0.75 in predicting severe COVID-19 outcomes. Conclusion Supervised contrastive learning enabled performance comparable to state-of-the-art deep learning models in multiple clinical tasks by using as few as 45 images and is a promising method for predictive modeling with use of small data sets and for predicting outcomes in shifting patient populations. © RSNA, 2022

Authors

  • Andrew B Sellergren
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Christina Chen
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Zaid Nabulsi
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Yuanzhen Li
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Aaron Maschinot
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Aaron Sarna
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Jenny Huang
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Charles Lau
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Sreenivasa Raju Kalidindi
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Mozziyar Etemadi
    From the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta (O.T.I., M.B.P., A.Q.J., A.D., A.O.B.); Division of Cardiology (S.D., T.D.M., L.K.) and Department of Bioengineering and Therapeutic Sciences (S.R.), University of California, San Francisco; and Department of Anesthesiology and Department of Biomedical Engineering, Northwestern University, Chicago, IL (M.E., J.A.H.).
  • Florencia Garcia-Vicente
    Northwestern Medicine, Chicago, IL, USA.
  • David Melnick
    Northwestern Medicine, Chicago, IL, USA.
  • Yun Liu
    Google Health, Palo Alto, CA USA.
  • Krish Eswaran
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Daniel Tse
    Google AI, Mountain View, CA, USA. tsed@google.com.
  • Neeral Beladia
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Dilip Krishnan
    From Google Health, Google, 3400 Hillview Ave, Palo Alto, CA 94304 (A.B.S., C.C., Z.N., Y. Liu, K.E., D.T., N.B., S.S.); Google Research, Cambridge, Mass (Y. Li, A.M., A.S., J.H., D.K.); Google via Advanced Clinical, Deerfield, Ill (C.L.); Apollo Radiology International, Hyderabad, India (S.R.K.); and Northwestern Medicine, Chicago, Ill (M.E., F.G.V., D.M.).
  • Shravya Shetty
    Google AI, Mountain View, CA, USA.