Self-Supervised Transfer Learning Based on Domain Adaptation for Benign-Malignant Lung Nodule Classification on Thoracic CT.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

The spatial heterogeneity is an important indicator of the malignancy of lung nodules in lung cancer diagnosis. Compared with 2D nodule CT images, the 3D volumes with entire nodule objects hold richer discriminative information. However, for deep learning methods driven by massive data, effectively capturing the 3D discriminative features of nodules in limited labeled samples is a challenging task. Different from previous models that proposed transfer learning models in a 2D pattern or learning from scratch 3D models, we develop a self-supervised transfer learning based on domain adaptation (SSTL-DA) 3D CNN framework for benign-malignant lung nodule classification. At first, a data pre-processing strategy termed adaptive slice selection (ASS) is developed to eliminate the redundant noise of the input samples with lung nodules. Then, the self-supervised learning network is constructed to learn robust image representations from CT images. Finally, a transfer learning method based on domain adaptation is designed to obtain discriminant features for classification. The proposed SSTL-DA method has been assessed on the LIDC-IDRI benchmark dataset, and it obtains an accuracy of 91.07% and an AUC of 95.84%. These results demonstrate that the SSTL-DA model achieves quite a competitive classification performance compared with some state-of-the-art approaches.

Authors

  • Hong Huang
    Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland, Department of Microbiology and Immunology and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD, USA, SIB Swiss Institute of Bioinformatics, 1 Rue Michel Servet, 1211 Geneva, Switzerland, Department of Medicine and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD, USA, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA, School of Information, University of South Florida, Tampa, FL, 33647, USA, Genomics Division, Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, 94720 CA USA, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland, ETH Zurich, Department of Computer Science, Universitätstr. 19, 8092 Zürich, Switzerland, SIB Swiss Institute of Bioinformatics, Universitätstr. 6, 8092 Zürich, Switzerland and University College London, Gower St, London WC1E 6BT, UK.
  • Ruoyu Wu
  • Yuan Li
    NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
  • Chao Peng
    Bioengineering College of Chongqing University, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China.