Deep Learning-Powered Bessel-Beam Multiparametric Photoacoustic Microscopy.

Journal: IEEE transactions on medical imaging
PMID:

Abstract

Enabling simultaneous and high-resolution quantification of the total concentration of hemoglobin ( [Formula: see text]), oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF), multi-parametric photoacoustic microscopy (PAM) has emerged as a promising tool for functional and metabolic imaging of the live mouse brain. However, due to the limited depth of focus imposed by the Gaussian-beam excitation, the quantitative measurements become inaccurate when the imaging object is out of focus. To address this problem, we have developed a hardware-software combined approach by integrating Bessel-beam excitation and conditional generative adversarial network (cGAN)-based deep learning. Side-by-side comparison of the new cGAN-powered Bessel-beam multi-parametric PAM against the conventional Gaussian-beam multi-parametric PAM shows that the new system enables high-resolution, quantitative imaging of [Formula: see text], sO2, and CBF over a depth range of [Formula: see text] in the live mouse brain, with errors 13-58 times lower than those of the conventional system. Better fulfilling the rigid requirement of light focusing for accurate hemodynamic measurements, the deep learning-powered Bessel-beam multi-parametric PAM may find applications in large-field functional recording across the uneven brain surface and beyond (e.g., tumor imaging).

Authors

  • Yifeng Zhou
  • Naidi Sun
  • Song Hu
    State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.