Validation of a deep-learning-based retinal biomarker (Reti-CVD) in the prediction of cardiovascular disease: data from UK Biobank.
Journal:
BMC medicine
PMID:
36691041
Abstract
BACKGROUND: Currently in the United Kingdom, cardiovascular disease (CVD) risk assessment is based on the QRISK3 score, in which 10% 10-year CVD risk indicates clinical intervention. However, this benchmark has limited efficacy in clinical practice and the need for a more simple, non-invasive risk stratification tool is necessary. Retinal photography is becoming increasingly acceptable as a non-invasive imaging tool for CVD. Previously, we developed a novel CVD risk stratification system based on retinal photographs predicting future CVD risk. This study aims to further validate our biomarker, Reti-CVD, (1) to detect risk group of ≥ 10% in 10-year CVD risk and (2) enhance risk assessment in individuals with QRISK3 of 7.5-10% (termed as borderline-QRISK3 group) using the UK Biobank.