This white paper presents a comprehensive biobanking framework developed at the European Cancer Moonshot Lund Center that merges rigorous sample handling, advanced automation, and multi-omic analyses to accelerate precision oncology. Tumor and blood-...
AIMS: This study aims to compare the performance of contemporary machine learning models with statistical models in predicting all-cause mortality in patients with type 2 diabetes mellitus and to develop a user-friendly mortality risk prediction tool...
Participation in research is supposed to be voluntary and informed. Yet it is difficult to ensure people are adequately informed about the potential uses of their biological materials when they donate samples for future research. We propose a novel c...
BACKGROUND AND AIMS: An in silico quantitative score of coronary artery disease (ISCAD), built using machine learning and clinical data from electronic health records, has been shown to result in gradations of risk of subclinical atherosclerosis, cor...
Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver
39632152
BACKGROUND: Predicting the risk of developing pancreatic ductal adenocarcinoma (PDAC) is of paramount importance, given its high mortality rate. Current PDAC risk prediction models rely on a limited number of variables, do not include genetics, and h...
In this study, we present a comprehensive pipeline to train and compare a broad spectrum of machine learning and deep learning brain clocks, integrating diverse preprocessing strategies and correction terms. Our analysis also includes established met...
Bone marrow adipose tissue is a distinct adipose subtype comprising more than 10% of fat mass in healthy humans. However, the functions and pathophysiological correlates of this tissue are unclear, and its genetic determinants remain unknown. Here, w...
In recent years, post-mortem imaging has advanced with techniques such as Post-Mortem Computed Tomography (PMCT) and Post-Mortem Magnetic Resonance imaging (PMMR). PMCT is particularly useful for assessing skeletal injuries, vascular lesions, and est...
BACKGROUND: The atherosclerotic cardiovascular disease (ASCVD) is associated with dementia. However, the risk factors of dementia in patients with ASCVD remain unclear, necessitating the development of accurate prediction models.
BACKGROUND: Identifying determinants of low bone mineral density (BMD) is crucial for understanding the underlying pathobiology and developing effective prevention and management strategies. Here we applied machine learning (ML) algorithms to predict...