Construction of an enhanced computed tomography radiomics model for non-invasively predicting granzyme A in head and neck squamous cell carcinoma by machine learning.
Journal:
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
PMID:
36920557
Abstract
PURPOSE: Classical prognostic indicators of head and neck squamous cell carcinoma (HNSCC) can no longer meet the clinical needs of precision medicine. This study aimed to establish a radiomics model to predict Granzyme A (GZMA) expression in patients with HNSCC.