Biologically Interpretable Deep Learning To Predict Response to Immunotherapy In Advanced Melanoma Using Mutations and Copy Number Variations.

Journal: Journal of immunotherapy (Hagerstown, Md. : 1997)
PMID:

Abstract

Only 30-40% of advanced melanoma patients respond effectively to immunotherapy in clinical practice, so it is necessary to accurately identify the response of patients to immunotherapy pre-clinically. Here, we develop KP-NET, a deep learning model that is sparse on KEGG pathways, and combine it with transfer- learning to accurately predict the response of advanced melanomas to immunotherapy using KEGG pathway-level information enriched from gene mutation and copy number variation data. The KP-NET demonstrates best performance with AUROC of 0.886 on testing set and 0.803 on an unseen evaluation set when predicting responders (CR/PR/SD with PFS ≥6 mo) versus non-responders (PD/SD with PFS <6 mo) in anti-CTLA-4 treated melanoma patients. The model also achieves an AUROC of 0.917 and 0.833 in predicting CR/PR versus PD, respectively. Meanwhile, the AUROC is 0.913 when predicting responders versus non-responders in anti-PD-1/PD-L1 melanomas. Moreover, the KP-NET reveals some genes and pathways associated with response to anti-CTLA-4 treatment, such as genes PIK3CA, AOX1 and CBLB, and ErbB signaling pathway, T cell receptor signaling pathway, et al. In conclusion, the KP-NET can accurately predict the response of melanomas to immunotherapy and screen related biomarkers pre-clinically, which can contribute to precision medicine of melanoma.

Authors

  • Liuchao Zhang
    Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China.
  • Lei Cao
    State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning, People's Republic of China. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning, People's Republic of China. University of Chinese Academy of Sciences, Beijing, People's Republic of China.
  • Shuang Li
    Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
  • Liuying Wang
  • Yongzhen Song
  • Yue Huang
    Xiamen University, Xiamen, Fujian 361005, China.
  • Zhenyi Xu
  • Jia He
    Shandong College of Electronic Technology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, China.
  • Meng Wang
    State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150001, China.
  • Kang Li
    Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China.