Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data ...
Journal of immunotherapy (Hagerstown, Md. : 1997)
Apr 9, 2025
Ovarian cancer (OV) remains the most lethal gynecological malignancy. The aim of this study was to identify molecular subtypes of OV through integrative multi-omics analysis and construct machine learning-based prognostic models for predicting the ef...
Low-pass single-cell DNA sequencing technologies and algorithmic advancements have enabled haplotype-specific copy number calling on thousands of cells within tumors. However, measurement uncertainty may result in spurious CNAs inconsistent with real...
Individualized prediction of cancer drug sensitivity is of vital importance in precision medicine. While numerous predictive methodologies for cancer drug response have been proposed, the precise prediction of an individual patient's response to drug...
Genomic heterogeneity has largely been overlooked in single-cell replication timing (scRT) studies. Here, we develop MnM, an efficient machine learning-based tool that allows disentangling scRT profiles from heterogenous samples. We use single-cell c...
The impact of mitochondrial and lysosomal co-dysfunction on breast cancer patient outcomes is unclear. The objective of this study is to develop a predictive machine learning (ML) model utilizing mitochondrial and lysosomal co-regulators in order to ...
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common type of breast cancer, with continuous recurrence remaining an important clinical issue. Current relapse predictive models in H...
Gastric cancer (GC) is characterized by notable heterogeneity and the impact of molecular subtypes on treatment and prognosis. The role of programmed cell death (PCD) in cellular processes is critical, yet its specific function in GC is underexplored...
BACKGROUND: Accurate prediction of copy number variations (CNVs) from targeted capture next-generation sequencing (NGS) data relies on effective normalization of read coverage profiles. The normalization process is particularly challenging due to hid...
Tumour content plays a pivotal role in directing the bioinformatic analysis of molecular profiles such as copy number variation (CNV). In clinical application, tumour purity estimation (TPE) is achieved either through visual pathological review [conv...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.