AIMC Topic: B7-H1 Antigen

Clear Filters Showing 1 to 10 of 75 articles

Machine-learning driven strategies for adapting immunotherapy in metastatic NSCLC.

Nature communications
Immune checkpoint inhibitors (ICIs), either as monotherapy (ICI-Mono) or combined with chemotherapy (ICI-Chemo), improves survival in advanced non-small cell lung cancer (NSCLC). However, prospective guidance for choosing between these options remain...

Integrative habitat analysis and multi-instance deep learning for predictive model of PD-1/PD-L1 immunotherapy efficacy in NSCLC patients: a dual-center retrospective study.

BMC medical imaging
BACKGROUND: PD-1/PD-L1 immunotherapy represents the primary treatment for advanced NSCLC patients; however, response rates to this therapy vary among individuals. This dual-center study aimed to integrate habitat radiomics and multi-instance deep lea...

USP5-Mediated PD-L1 deubiquitination regulates immunotherapy efficacy in melanoma.

Journal of translational medicine
BACKGROUND: The role of post-translational modifications(PTMs) in PD-L1-mediated immune resistance and melanoma progression remains poorly understood.

Self-Driving and Detachable Lab-Microrobots Tailor Drug Delivery for Closed-Loop Stimulation of the Antitumor Immune Cycle.

ACS nano
Hypoxia arises in most solid tumors with insufficient blood flow, which hinders the delivery and efficacy of therapeutic agents to tumors. In this work, utilizing anaerobic bacteria capable of seeking out hypoxic areas for flourishing, we constructed...

Multiple instance learning-based prediction of programmed death-ligand 1 (PD-L1) expression from hematoxylin and eosin (H&E)-stained histopathological images in breast cancer.

PeerJ
Programmed death-ligand 1 (PD-L1) is an important biomarker increasingly used as a predictive marker in breast cancer immunotherapy. Immunohistochemical quantification remains the standard method for assessment. However, it presents challenges relate...

Predicting PD-L1 status in NSCLC patients using deep learning radiomics based on CT images.

Scientific reports
Radiomics refers to the utilization of automated or semi-automated techniques to extract and analyze numerous quantitative features from medical images, such as computerized tomography (CT) or magnetic resonance imaging (MRI) scans. This study aims t...

Prediction of PD-L1 expression in NSCLC patients using PET/CT radiomics and prognostic modelling for immunotherapy in PD-L1-positive NSCLC patients.

Clinical radiology
AIM: To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival...

A weakly supervised deep learning framework for automated PD-L1 expression analysis in lung cancer.

Frontiers in immunology
The growing application of immune checkpoint inhibitors (ICIs) in cancer immunotherapy has underscored the critical need for reliable methods to identify patient populations likely to respond to ICI treatments, particularly in lung cancer treatment. ...

An interpretable machine learning model based on computed tomography radiomics for predicting programmed death ligand 1 expression status in gastric cancer.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Programmed death ligand 1 (PD-L1) expression status, closely related to immunotherapy outcomes, is a reliable biomarker for screening patients who may benefit from immunotherapy. Here, we developed and validated an interpretable machine l...

Multimodal deep learning for predicting PD-L1 biomarker and clinical immunotherapy outcomes of esophageal cancer.

Frontiers in immunology
Although the immune checkpoint inhibitors (ICIs) have demonstrated remarkable anti-tumor efficacy in solid tumors, the proportion of ESCC patients who benefit from ICIs remains limited. Current biomarkers have assisted in identifying potential respon...