Deep learning-based multiomics integration model for predicting axillary lymph node metastasis in breast cancer.
Journal:
Future oncology (London, England)
PMID:
37489287
Abstract
To develop a deep learning-based multiomics integration model. Five types of omics data (mRNA, DNA methylation, miRNA, copy number variation and protein expression) were used to build a deep learning-based multiomics integration model a deep neural network, incorporating an attention mechanism that adaptively considers the weights of multiomics features. Compared with other methods, the deep learning-based multiomics integration model achieved remarkable results, with an area under the curve of 0.89 (95% CI: 0.863-0.910). The deep learning-based multiomics integration model achieved promising results and is an effective method for predicting axillary lymph node metastasis in breast cancer.