Exploring contrast generalisation in deep learning-based brain MRI-to-CT synthesis.

Journal: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Published Date:

Abstract

BACKGROUND: Synthetic computed tomography (sCT) has been proposed and increasingly clinically adopted to enable magnetic resonance imaging (MRI)-based radiotherapy. Deep learning (DL) has recently demonstrated the ability to generate accurate sCT from fixed MRI acquisitions. However, MRI protocols may change over time or differ between centres resulting in low-quality sCT due to poor model generalisation.

Authors

  • Lotte Nijskens
    Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Science, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands.
  • Cornelis A T van den Berg
    Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Joost J C Verhoeff
    Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Matteo Maspero
    Department of Radiation Oncology, Imaging and Cancer Division, University Medical Center Utrecht, Utrecht, The Netherlands; Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.