Label-free impedimetric glycan biosensor for quantitative evaluation interactions between pathogenic bacteria and mannose.

Journal: Biosensors & bioelectronics
PMID:

Abstract

In order to understanding the pathogenic mechanism of infectious diseases, it was important to study the selective recognition and interaction between pathogenic bacteria and host cells. In this paper, a novel electrochemical impedance biosensor was proposed, in which the Man/MUA-MH/Au sensing surface (Man: mannose; MUA: 11-mercapto eleven acid; MH: 6-mercapto hexanol) was fabricated and was of good biologically active and stability. The capture capacity of the designed sensing surface for S. typhimurium ATCC14028, E. coli JM109 and E. coli DH5α were characterized by Electrochemical impedance spectroscopy (EIS). According to Randless equivalent circuit and the Frumkin isotherm model, electron transfer impedance (R) was obtained and the binding affinity of the three bacteria and Man was calculated. It was shown that the sensing surface had a better binding affinity for S. typhimurium ATCC14028 with K = 2.16 × 10 CFU/mL. The impedance normalized value NIC was of a good linear relationship with the logarithm of bacterial concentration (R = 0.96) in the range of 50-1000 CFU/mL. The detection limit was 50 CFU/mL. Meanwhile, the E. coli JM109 which expresses type 1 fimbriae was also adsorbed on the designed sensing surface with K = 5.84 × 10 CFU/mL. It was illustrated that the novel electrochemical impedance biosensor could be more rapid and reliable for studying interactions between pathogen and glycan, and it was also perspective for a new point-of-care diagnostic tool for evaluating the pathogenicity bacteria.

Authors

  • Feiyun Cui
    School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China; Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China.
  • Yi Xu
    School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
  • Renjie Wang
    School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China; Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China.
  • Haitao Liu
    Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400044, China.
  • Li Chen
    Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, China.
  • Qing Zhang
    Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
  • Xiaojing Mu
    Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China; Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400044, China; International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China; School of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China.