Gas chromatography-mass spectrometry metabolomic study of lipopolysaccharides toxicity on rat basophilic leukemia cells.

Journal: Chemico-biological interactions
Published Date:

Abstract

Lipopolysaccharide (LPS) can lead to uncontrollable cytokine production, fatal sepsis syndrome and depression/multiple organ failure, as pathophysiologic demonstration. Various toxic effects of LPS have been extensively reported, mainly on the toxicity of LPS in cellular level, macrophages or tumor cells, etc. This work aimed on the impact of LPS on mast cell metabolism, which focused on LPS-induced cellular metabolic profiles. Gas chromatography-mass spectrometry (GC-MS) based metabolomics strategy was implemented for the endo-metabolites detection in rat basophilic leukemia (RBL-2H3) cells, treated with 10 μg/mL LPS for 24 h, along with multiple time-dose tests of cells viability/apoptosis. Significantly changes metabolites were mainly involved the metabolism of glycine, serine, threonine and the biosynthesis of phenylalanine, tyrosine, tryptophan and pentose phosphate pathway. The endo-metabolism results illustrated that LPS treatment led to downregulation of glycine, serine and threonine metabolism besides pentose phosphate pathway in RBL-2H3 cells. This novel insight into LPS cellular metabolism, provides some heuristic guidance for elucidating the underlying mechanism of LPS-mediated disease.

Authors

  • Fangchao Cui
    School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Pei Zhu
    State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China.
  • Jian Ji
    School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Ivana Blaženović
    West Coast Metabolomics Center, UC Davis, 95616 Davis, CA, USA.
  • Morteza Gholami
    Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran.
  • Yinzhi Zhang
    School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Xiulan Sun
    School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address: sxlzyz@jiangnan.edu.cn.