Artificial Intelligence in BI-RADS Categorization of Breast Lesions on Ultrasound: Can We Omit Excessive Follow-ups and Biopsies?
Journal:
Academic radiology
Published Date:
Dec 11, 2023
Abstract
RATIONALE AND OBJECTIVES: Artificial intelligence (AI) systems have been increasingly applied to breast ultrasonography. They are expected to decrease the workload of radiologists and to improve diagnostic accuracy. The aim of this study is to evaluate the performance of an AI system for the BI-RADS category assessment in breast masses detected on breast ultrasound. MATERIALS AND METHODS: A total of 715 masses detected in 530 patients were analyzed. Three breast imaging centers of the same institution and nine breast radiologists participated in this study. Ultrasound was performed by one radiologist who obtained two orthogonal views of each detected lesion. These images were retrospectively reviewed by a second radiologist blinded to the patient's clinical data. A commercial AI system evaluated images. The level of agreement between the AI system and the two radiologists and their diagnostic performance were calculated according to dichotomic BI-RADS category assessment.