Deep match: A zero-shot framework for improved fiducial-free respiratory motion tracking.
Journal:
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PMID:
38403025
Abstract
BACKGROUND AND PURPOSE: Motion management is essential to reduce normal tissue exposure and maintain adequate tumor dose in lung stereotactic body radiation therapy (SBRT). Lung SBRT using an articulated robotic arm allows dynamic tracking during radiation dose delivery. Two stereoscopic X-ray tracking modes are available - fiducial-based and fiducial-free tracking. Although X-ray detection of implanted fiducials is robust, the implantation procedure is invasive and inapplicable to some patients and tumor locations. Fiducial-free tracking relies on tumor contrast, which challenges the existing tracking algorithms for small (e.g., <15 mm) and/or tumors obscured by overlapping anatomies. To markedly improve the performance of fiducial-free tracking, we proposed a deep learning-based template matching algorithm - Deep Match.