AIMC Topic: Radiosurgery

Clear Filters Showing 1 to 10 of 152 articles

Classifying Stereotactic Radiosurgery Patients by Primary Diagnosis Using Natural Language Processing of Clinical Notes.

JCO clinical cancer informatics
PURPOSE: Accurate identification of the primary tumor diagnosis of patients who have undergone stereotactic radiosurgery (SRS) from electronic health records is a critical but challenging task. Traditional methods of identifying the primary tumor his...

A machine learning tool for prediction of vertebral compression fracture following stereotactic body radiation therapy for spinal metastases.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: The most common adverse event following spine stereotactic body radiotherapy (SBRT) is vertebral compression fracture (VCF). There is interest in the development of patient-specific tools that can predict those at high risk of...

Using deep learning generated CBCT contours for online dose assessment of prostate SABR treatments.

Journal of applied clinical medical physics
Prostate Stereotactic Ablative Body Radiotherapy (SABR) is an ultra-hypofractionated treatment where small setup errors can lead to higher doses to organs at risk (OARs). Although bowel and bladder preparation protocols reduce inter-fraction variabil...

Deep learning for automated segmentation of brain edema in meningioma after radiosurgery.

BMC medical imaging
BACKGROUND: Although gamma Knife radiosurgery (GKRS) is commonly used to treat benign brain tumors, such as meningioma, irradiating the surrounding brain tissue can lead to perifocal edema within a few months after the procedure. Volumetric assessmen...

Rapid dose prediction for lung CyberKnife radiotherapy plans utilizing a deep learning approach by incorporating dosimetric features delivered by noncoplanar beams.

Biomedical physics & engineering express
. The dose distribution of lung cancer patients treated with the CyberKnife (CK) system is influenced by various factors, including tumor location and the direction of CK beams. The objective of this study is to present a deep learning approach that ...

Development of Multiparametric Prognostic Models for Stereotactic Magnetic Resonance Guided Radiation Therapy of Pancreatic Cancers.

International journal of radiation oncology, biology, physics
PURPOSE: Stereotactic magnetic resonance guided adaptive radiation therapy (SMART) is a new option for local treatment of unresectable pancreatic ductal adenocarcinoma, showing interesting survival and local control (LC) results. Despite this, some p...

Proton dose calculation with transformer: Transforming spot map to dose.

Medical physics
BACKGROUND: Conventional proton dose calculation methods are either time- and resource-intensive, like Monte Carlo (MC) simulations, or they sacrifice accuracy, as seen with analytical methods. This trade-off between computational efficiency and accu...

Automated segmentation of brain metastases in T1-weighted contrast-enhanced MR images pre and post stereotactic radiosurgery.

BMC medical imaging
BACKGROUND AND PURPOSE: Accurate segmentation of brain metastases on Magnetic Resonance Imaging (MRI) is tedious and time-consuming for radiologists that could be optimized with deep learning (DL). Previous studies assessed several DL algorithms focu...

A knowledge-based planning model to identify fraction-reduction opportunities in brain stereotactic radiotherapy.

Journal of applied clinical medical physics
OBJECTIVE: To develop and validate a HyperArc-based RapidPlan (HARP) model for three-fraction brain stereotactic radiotherapy (SRT) plans to then use to replan previously treated five-fraction SRT plans. Demonstrating the possibility of reducing the ...

Emergency Position Recovery Using Forward Kinematics in Robotic Patient Positioning Systems for Radiosurgery.

Sensors (Basel, Switzerland)
Precise patient positioning is paramount in radiosurgery to ensure the accurate targeting of tumors while minimizing damage to surrounding healthy tissues. This study focuses on the development and validation of a robust forward kinematics (FK) model...