Synthesizing images of tau pathology from cross-modal neuroimaging using deep learning.

Journal: Brain : a journal of neurology
PMID:

Abstract

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.

Authors

  • Jeyeon Lee
    Department of Radiology, Mayo Clinic, Rochester, MN, USA.
  • Brian J Burkett
    Department of Radiology, Mayo Clinic, Rochester, MN, USA.
  • Hoon-Ki Min
    Department of Radiology, Mayo Clinic, Rochester, MN, USA.
  • Matthew L Senjem
    Department of Information Technology, Mayo Clinic, Rochester, MN, USA.
  • Ellen Dicks
    Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
  • Nick Corriveau-Lecavalier
    Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
  • Carly T Mester
    Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
  • Heather J Wiste
    Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
  • Emily S Lundt
    Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
  • Melissa E Murray
    Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
  • Aivi T Nguyen
    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
  • Ross R Reichard
    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
  • Hugo Botha
    Department of Neurology, Mayo Clinic, Rochester, MN, USA.
  • Jonathan Graff-Radford
    Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA.
  • Leland R Barnard
    Department of Neurology, Mayo Clinic, Rochester, MN, USA.
  • Jeffrey L Gunter
    Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA. Electronic address: gunter.jeffrey@mayo.edu.
  • Christopher G Schwarz
    Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA.
  • Kejal Kantarci
    Department of Radiology, Mayo Clinic, Rochester, MN, USA.
  • David S Knopman
    Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA.
  • Bradley F Boeve
    Department of Neurology, Mayo Clinic, Rochester, MN, USA.
  • Val J Lowe
    Department of Radiology, Mayo Clinic, Rochester, Minnesota.
  • Ronald C Petersen
    Department of Neurology, Mayo Clinic, Rochester, USA.
  • Clifford R Jack
    Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA.
  • David T Jones
    Department of Computer Science, Bioinformatics Group, University College London, Gower Street, London, WC1E 6BT, United Kingdom. d.t.jones@ucl.ac.uk.