Light&fast generative adversarial network for high-fidelity CT image synthesis of liver tumor.
Journal:
Computer methods and programs in biomedicine
Published Date:
May 28, 2024
Abstract
BACKGROUND AND OBJECTIVE: Hepatocellular carcinoma is a common disease with high mortality. Through deep learning methods to analyze HCC CT, the screening classification and prognosis model of HCC can be established, which further promotes the development of computer-aided diagnosis and treatment in the treatment of HCC. However, there are significant challenges in the actual establishment of HCC auxiliary diagnosis model due to data imbalance, especially for rare subtypes of HCC and underrepresented demographic groups. This study proposes a GAN model aimed at overcoming these obstacles and improving the accuracy of HCC auxiliary diagnosis.