Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study.

Journal: RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin
Published Date:

Abstract

To evaluate the effect of a vendor-agnostic deep learning denoising (DLD) algorithm on diagnostic image quality of non-contrast cranial computed tomography (ncCT) across five CT scanners.This retrospective single-center study included ncCT data of 150 consecutive patients (30 for each of the five scanners) who had undergone routine imaging after minor head trauma. The images were reconstructed using filtered back projection (FBP) and a vendor-agnostic DLD method. Using a 4-point Likert scale, three readers performed a subjective evaluation assessing the following quality criteria: overall diagnostic image quality, image noise, gray matter-white matter differentiation (GM-WM), artifacts, sharpness, and diagnostic confidence. Objective analysis included evaluation of noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and an artifact index for the posterior fossa.In subjective image quality assessment, DLD showed constantly superior results compared to FBP in all categories and for all scanners (p<0.05) across all readers. The objective image quality analysis showed significant improvement in noise, SNR, and CNR as well as for the artifact index using DLD for all scanners (p<0.001).The vendor-agnostic deep learning denoising algorithm provided significantly superior results in the subjective as well as in the objective analysis of ncCT images of patients with minor head trauma concerning all parameters compared to the FBP reconstruction. This effect has been observed in all five included scanners. · Significant improvement of image quality for 5 scanners due to the vendor-agnostic DLD. · Subjects were patients with routine imaging after minor head trauma. · Reduction of artifacts in the posterior fossa due to the DLD. · Access to improved image quality even for older scanners from different vendors. · Kapper C, Müller L, Kronfeld A et al. Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study. Fortschr Röntgenstr 2024; DOI 10.1055/a-2290-4781.

Authors

  • Christian Kapper
    Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
  • Lukas Müller
    Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland. lukas.mueller@unimedizin-mainz.de.
  • Andrea Kronfeld
    Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckst. 1, 55131 Mainz, Germany (S.A., M.A.M., L.B., A.K., M.A.B., A.E.O.).
  • Mario Alberto Abello Mercado
    Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckst. 1, 55131 Mainz, Germany (S.A., M.A.M., L.B., A.K., M.A.B., A.E.O.).
  • Sebastian Altmann
    Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckst. 1, 55131 Mainz, Germany (S.A., M.A.M., L.B., A.K., M.A.B., A.E.O.). Electronic address: Sebastian.altmann@unimedizin-mainz.de.
  • Nils Grauhan
    Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
  • Dirk Graafen
    Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
  • Marc A Brockmann
    Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckst. 1, 55131 Mainz, Germany (S.A., M.A.M., L.B., A.K., M.A.B., A.E.O.).
  • Ahmed E Othman
    Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany; Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany. Electronic address: ahmed.e.othman@googlemail.com.