Predicting the age of field mosquitoes using mass spectrometry and deep learning.

Journal: Science advances
PMID:

Abstract

Mosquito-borne diseases like malaria are rising globally, and improved mosquito vector surveillance is needed. Survival of mosquitoes is key for epidemiological monitoring of malaria transmission and evaluation of vector control strategies targeting mosquito longevity, as the risk of pathogen transmission increases with mosquito age. However, the available tools to estimate field mosquito age are often approximate and time-consuming. Here, we show a rapid method that combines matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry with deep learning for mosquito age prediction. Using 2763 mass spectra from the head, legs, and thorax of 251 field-collected mosquitoes, we developed deep learning models that achieved a best mean absolute error of 1.74 days. We also demonstrate consistent performance at two ecological sites in Senegal, supported by age-related protein changes. Our approach is promising for malaria control and the field of vector biology, benefiting other disease vectors like mosquitoes.

Authors

  • Noshine Mohammad
    Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France.
  • Pauline Naudion
    Sorbonne Université, Inserm, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013 Paris, France.
  • Abdoulaye Kane Dia
    Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal.
  • Pierre-Yves Boëlle
    Sorbonne Université, Inserm, Institut Pierre Louis d'Épidémiologie et de Santé Publique, IPLESP, 75012 Paris, France.
  • Abdoulaye Konaté
    Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal.
  • Lassana Konaté
    Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal.
  • El Hadji Amadou Niang
    Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal.
  • Renaud Piarroux
    AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013, Paris, France.
  • Xavier Tannier
    Sorbonne Université, Inserm, Univ Paris 13, Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances pour la e-Santé, LIMICS, 75006 Paris, France. Electronic address: xavier.tannier@sorbonne-universite.fr.
  • Cécile Nabet
    Sorbonne Université, Inserm, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013 Paris, France.