EMG-based prediction of step direction for a better control of lower limb wearable devices.
Journal:
Computer methods and programs in biomedicine
Published Date:
Jun 24, 2024
Abstract
BACKGROUND AND OBJECTIVES: Lower-limb wearable devices can significantly improve the quality of life of subjects suffering from debilitating conditions, such as amputations, neurodegenerative disorders, and stroke-related impairments. Current control approaches, limited to forward walking, fall short of replicating the complexity of human locomotion in complex environments, such as uneven terrains or crowded places. Here we propose a high-level controller based on two Support Vector Machines exploiting four surface electromyography (EMG) signals of the thigh muscles to detect the onset (Toe-off intention decoder) and the direction (Directional EMG decoder) of the upcoming step.