Assessing the effectiveness of artificial intelligence (AI) in prioritising CT head interpretation: study protocol for a stepped-wedge cluster randomised trial (ACCEPT-AI).
Journal:
BMJ open
PMID:
38885990
Abstract
INTRODUCTION: Diagnostic imaging is vital in emergency departments (EDs). Accessibility and reporting impacts ED workflow and patient care. With radiology workforce shortages, reporting capacity is limited, leading to image interpretation delays. Turnaround times for image reporting are an ED bottleneck. Artificial intelligence (AI) algorithms can improve productivity, efficiency and accuracy in diagnostic radiology, contingent on their clinical efficacy. This includes positively impacting patient care and improving clinical workflow. The ACCEPT-AI study will evaluate Qure.ai's qER software in identifying and prioritising patients with critical findings from AI analysis of non-contrast head CT (NCCT) scans.