AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Emergency Service, Hospital

Showing 1 to 10 of 435 articles

Clear Filters

Use of deep learning model for paediatric elbow radiograph binomial classification: initial experience, performance and lessons learnt.

Singapore medical journal
INTRODUCTION: In this study, we aimed to compare the performance of a convolutional neural network (CNN)-based deep learning model that was trained on a dataset of normal and abnormal paediatric elbow radiographs with that of paediatric emergency dep...

Predicting Agitation Events in the Emergency Department Through Artificial Intelligence.

JAMA network open
IMPORTANCE: Agitation events are increasing in emergency departments (EDs), exacerbating safety risks for patients and clinicians. A wide range of clinical etiologies and behavioral patterns in the emergency setting make agitation prediction difficul...

AI-Enhanced Speech Recognition in Triage.

Studies in health technology and informatics
Triage is used in emergency departments to ensure timely patient care according to urgency of treatment. However, triage accuracy and efficiency remain challenging due to time-constraints and high demand. This proof-of-concept study evaluates an AI-p...

Machine learning to risk stratify chest pain patients with non-diagnostic electrocardiogram in an Asian emergency department.

Annals of the Academy of Medicine, Singapore
INTRODUCTION: Elevated troponin, while essential for diagnosing myocardial infarction, can also be present in non-myocardial infarction conditions. The myocardial-ischaemic-injury-index (MI3) algorithm is a machine learning algorithm that considers a...

Cost-Effectiveness Analysis of a Machine Learning-Based eHealth System to Predict and Reduce Emergency Department Visits and Unscheduled Hospitalizations of Older People Living at Home: Retrospective Study.

JMIR formative research
BACKGROUND: Dependent older people or those losing their autonomy are at risk of emergency hospitalization. Digital systems that monitor health remotely could be useful in reducing these visits by detecting worsening health conditions earlier. Howeve...

Communication challenges and experiences between parents and providers in South Korean paediatric emergency departments: a qualitative study to define AI-assisted communication agents.

BMJ open
OBJECTIVES: This study aimed to explore communication challenges between parents and healthcare providers in paediatric emergency departments (EDs) and to define the roles and functions of an artificial intelligence (AI)-assisted communication agent ...

AI-Based Analysis of Abdominal Ultrasound Images to Support Medical Diagnosis in Emergency Departments.

Studies in health technology and informatics
The goal of segmentation in abdominal imaging for emergency medicine is to accurately identify and delineate organs, as well as to detect and localize pathological areas. This precision is critical for rapid, informed decision-making in acute care sc...

Machine Learning Models for Predicting Pediatric Hospitalizations Due to Air Pollution and Humidity: A Retrospective Study.

Pediatric pulmonology
BACKGROUND: Exposure to air pollution and meteorological conditions, such as humidity, has been linked to adverse respiratory health outcomes in children. This study aims to develop predictive models for pediatric hospitalizations based on both envir...

A meta-analysis of the diagnostic test accuracy of artificial intelligence predicting emergency department dispositions.

BMC medical informatics and decision making
BACKGROUND: The rapid advancement of Artificial Intelligence (AI) has led to its widespread application across various domains, showing encouraging outcomes. Many studies have utilized AI to forecast emergency department (ED) disposition, aiming to f...

Artificial intelligence for severity triage based on conversations in an emergency department in Korea.

Scientific reports
In the fast-paced emergency departments, where crises unfold unpredictably, the systematic prioritization of critical patients based on a severity classification is vital for swift and effective treatment. This study aimed to enhance the quality of e...