The surge in high-throughput technologies has empowered the acquisition of vast genomic datasets, prompting the search for genetic markers and biomarkers relevant to complex traits. However, grappling with the inherent complexities of high dimensiona...
Sugarcane (Saccharum spp.) plays a crucial role in global sugar production; however, the efficiency of breeding programs has been hindered by its heterozygous polyploid genomes. Considering non-additive genetic effects is essential in genome predicti...
Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivaleno...
This study focuses on meeting end-users' demand for cassava (Manihot esculenta Crantz) varieties with low cyanogenic potential (hydrogen cyanide potential [HCN]) by using near-infrared spectrometry (NIRS). This technology provides a fast, accurate, a...
Prediction of breeding values is central to plant breeding and has been revolutionized by the adoption of genomic selection (GS). Use of machine- and deep-learning algorithms applied to complex traits in plants can improve prediction accuracies. Beca...
Genomic selection (GS) is revolutionizing conventional ways of developing new plants and animals. However, because it is a predictive methodology, GS strongly depends on statistical and machine learning to perform these predictions. For continuous ou...
Deep learning (DL) is revolutionizing the development of artificial intelligence systems. For example, before 2015, humans were better than artificial machines at classifying images and solving many problems of computer vision (related to object loca...
The organization of subcellular components in a cell is critical for its function and studying cellular processes, protein-protein interactions, identifying potential drug targets, network analysis, and other systems biology mechanisms. Determining p...
Machine learning (ML) has garnered significant attention for its potential to enhance the accuracy of genomic predictions (GPs) in various economic crops with the use of complete genomic information. Genome-wide association studies (GWAS) are widely ...
Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide pol...