AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Disease Resistance

Showing 1 to 10 of 13 articles

Clear Filters

Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance.

The plant genome
New methods and algorithms are being developed for predicting untested phenotypes in schemes commonly used in genomic selection (GS). The prediction of disease resistance in GS has its own peculiarities: a) there is consensus about the additive natur...

Machine learning approaches reveal genomic regions associated with sugarcane brown rust resistance.

Scientific reports
Sugarcane is an economically important crop, but its genomic complexity has hindered advances in molecular approaches for genetic breeding. New cultivars are released based on the identification of interesting traits, and for sugarcane, brown rust re...

A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits.

Plant communications
Lodging is a common problem in rice, reducing its yield and mechanical harvesting efficiency. Rice architecture is a key aspect of its domestication and a major factor that limits its high productivity. The ideal rice culm structure, including major_...

Machine learning for phytopathology: from the molecular scale towards the network scale.

Briefings in bioinformatics
With the increasing volume of high-throughput sequencing data from a variety of omics techniques in the field of plant-pathogen interactions, sorting, retrieving, processing and visualizing biological information have become a great challenge. Within...

Effector translocation and rational design of disease resistance.

Trends in microbiology
The effector repertoire of a pathogen is dynamically evolving. However, the effector translocation mechanism, partly elucidated recently, may be conserved. By targeting the effector translocation machinery, rather than the individual evolving effecto...

PotatoG-DKB: a potato gene-disease knowledge base mined from biological literature.

PeerJ
BACKGROUND: Potato is the fourth largest food crop in the world, but potato cultivation faces serious threats from various diseases and pests. Despite significant advancements in research on potato disease resistance, these findings are scattered acr...

Integrated Assays of Genome-Wide Association Study, Multi-Omics Co-Localization, and Machine Learning Associated Calcium Signaling Genes with Oilseed Rape Resistance to .

International journal of molecular sciences
(Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor gene...

Integrating genomics, phenomics, and deep learning improves the predictive ability for Fusarium head blight-related traits in winter wheat.

The plant genome
Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivaleno...

Machine learning-based identification of general transcriptional predictors for plant disease.

The New phytologist
This study investigated the generalizability of Arabidopsis thaliana immune responses across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomonas syringae, using a data-driven, machine learning approach. Machine le...

Multiple, Single Trait GWAS and Supervised Machine Learning Reveal the Genetic Architecture of Fraxinus excelsior Tolerance to Ash Dieback in Europe.

Plant, cell & environment
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among gen...