AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Arrhythmias, Cardiac

Showing 61 to 70 of 272 articles

Clear Filters

ECG arrhythmia detection in an inter-patient setting using Fourier decomposition and machine learning.

Medical engineering & physics
ECG beat classification or arrhythmia detection through artificial intelligence (AI) is an active topic of research. It is vital to recognize and detect the type of arrhythmia for monitoring cardiac abnormalities. The AI-based ECG beat classification...

CLINet: A novel deep learning network for ECG signal classification.

Journal of electrocardiology
Machine learning is poised to revolutionize medicine with algorithms that spot cardiac arrhythmia. An automated diagnostic approach can boost the efficacy of diagnosing life-threatening arrhythmia disorders in routine medical procedures. In this pape...

Person identification with arrhythmic ECG signals using deep convolution neural network.

Scientific reports
Over the past decade, the use of biometrics in security systems and other applications has grown in popularity. ECG signals in particular are attracting increased attention due to their characteristics, which are required for a trustworthy identifica...

Monitoring of Remotely Reprogrammable Implantable Loop Recorders With Algorithms to Reduce False-Positive Alerts.

Journal of the American Heart Association
BACKGROUND: Implantable loop recorders (ILRs) are increasingly placed for arrhythmia detection. However, historically, ≈75% of ILR alerts are false positives, requiring significant time and effort for adjudication. The LINQII and LUX-Dx are remotely ...

Towards Flexible and Low-Power Wireless Smart Sensors: Reconfigurable Analog-to-Feature Conversion for Healthcare Applications.

Sensors (Basel, Switzerland)
Analog-to-feature (A2F) conversion based on non-uniform wavelet sampling (NUWS) has demonstrated the ability to reduce energy consumption in wireless sensors while employed for electrocardiogram (ECG) anomaly detection. The technique involves extract...

Scalar invariant transform based deep learning framework for detecting heart failures using ECG signals.

Scientific reports
Heart diseases are leading to death across the globe. Exact detection and treatment for heart disease in its early stages could potentially save lives. Electrocardiogram (ECG) is one of the tests that take measures of heartbeat fluctuations. The devi...

Impact of artificial intelligence arrhythmia mapping on time to first ablation, procedure duration, and fluoroscopy use.

Journal of cardiovascular electrophysiology
INTRODUCTION: Artificial intelligence (AI) ECG arrhythmia mapping provides arrhythmia source localization using 12-lead ECG data; whether this information impacts procedural efficiency is unknown. We performed a retrospective, case-control study to e...

Deep Learning-Augmented ECG Analysis for Screening and Genotype Prediction of Congenital Long QT Syndrome.

JAMA cardiology
IMPORTANCE: Congenital long QT syndrome (LQTS) is associated with syncope, ventricular arrhythmias, and sudden death. Half of patients with LQTS have a normal or borderline-normal QT interval despite LQTS often being detected by QT prolongation on re...

An Energy-Efficient ECG Processor With Ultra-Low-Parameter Multistage Neural Network and Optimized Power-of-Two Quantization.

IEEE transactions on biomedical circuits and systems
This work presents an energy-efficient ECG processor designed for Cardiac Arrhythmia Classification. The processor integrates a pre-processing and neural network accelerator, achieved through algorithm-hardware co-design to optimize hardware resource...