Patients' postoperative facial swelling following third molars extraction may have both biological impacts and social impacts. The purpose of this study was to evaluate the accuracy of artificial neural networks in the prediction of the postoperative...
The approximity of the inferior alveolar nerve (IAN) to the roots of lower third molars (M3) is a risk factor for the occurrence of nerve damage and subsequent sensory disturbances of the lower lip and chin following the removal of third molars. To a...
Staging third molar development is commonly used for age estimation in subadults. Automated developmental stage allocation to the mandibular left third molar in panoramic radiographs has been examined in a pilot study. This method used an AlexNet Dee...
Staging third molar development is commonly used for age assessment in sub-adults. Current staging techniques are, at most, semi-automated and rely on manual interactions prone to operator variability. The aim of this study was to fully automate the ...
Oral surgery, oral medicine, oral pathology and oral radiology
32444332
OBJECTIVE: The aim of this study was to compare time and storage space requirements, diagnostic performance, and consistency among 3 image recognition convolutional neural networks (CNNs) in the evaluation of the relationships between the mandibular ...
This paper proposes a convolutional neural network (CNN)-based deep learning model for predicting the difficulty of extracting a mandibular third molar using a panoramic radiographic image. The applied dataset includes a total of 1053 mandibular thir...
CONTEXT: Dental age, one of the indicators of biological age, is inferred by radiological methods. Two of the most commonly used methods are using Demirjian's radiographic stages of permanent teeth excluding the third molar (Demirjian's and Willems' ...
Impacted mandibular third molars (M3M) are associated with the occurrence of distal caries on the adjacent mandibular second molars (DCM2M). In this study, we aimed to develop and validate five machine learning (ML) models designed to predict the occ...
OBJECTIVES: The objective of our study was to develop and validate a deep learning approach based on convolutional neural networks (CNNs) for automatic detection of the mandibular third molar (M3) and the mandibular canal (MC) and evaluation of the r...
Pell and Gregory, and Winter's classifications are frequently implemented to classify the mandibular third molars and are crucial for safe tooth extraction. This study aimed to evaluate the classification accuracy of convolutional neural network (CNN...