AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Pharmaceutical Preparations

Showing 11 to 20 of 478 articles

Clear Filters

Modelling of intrinsic membrane permeability of drug molecules by explainable ML-based q-RASPR approach towards better pharmacokinetics and toxicokinetics properties.

SAR and QSAR in environmental research
Drug discovery's success lies in potent inhibition against a target and optimum pharmacokinetic and toxicokinetic properties of drug molecules. Membrane permeability is a crucial factor in determining the absorption, distribution, metabolism, and exc...

SS-DTI: A deep learning method integrating semantic and structural information for drug-target interaction prediction.

Journal of bioinformatics and computational biology
Drug-target interaction (DTI) prediction is pivotal in drug discovery and repurposing, providing a more efficient alternative to traditional wet-lab experiments by saving time and resources and expediting the identification of potential targets. Curr...

Rapid and sensitive detection of pharmaceutical pollutants in aquaculture by aluminum foil substrate based SERS method combined with deep learning algorithm.

Analytica chimica acta
BACKGROUND: Pharmaceutical residual such as antibiotics and disinfectants in aquaculture wastewater have significant potential risks for environment and human health. Surface enhanced Raman spectroscopy (SERS) has been widely used for the detection o...

Drug-Target Affinity Prediction Based on Topological Enhanced Graph Neural Networks.

Journal of chemical information and modeling
Graph neural networks (GNNs) have achieved remarkable success in drug-target affinity (DTA) analysis, reducing the cost of drug development. Unlike traditional one-dimensional (1D) sequence-based methods, GNNs leverage graph structures to capture ric...

GramSeq-DTA: A Grammar-Based Drug-Target Affinity Prediction Approach Fusing Gene Expression Information.

Biomolecules
Drug-target affinity (DTA) prediction is a critical aspect of drug discovery. The meaningful representation of drugs and targets is crucial for accurate prediction. Using 1D string-based representations for drugs and targets is a common approach that...

Application of Machine Learning and Mechanistic Modeling to Predict Intravenous Pharmacokinetic Profiles in Humans.

Journal of medicinal chemistry
Accurate prediction of new compounds' pharmacokinetic (PK) profile in humans is crucial for drug discovery. Traditional methods, including allometric scaling and mechanistic modeling, rely on parameters from or testing, which are labor-intensive an...

H2GnnDTI: hierarchical heterogeneous graph neural networks for drug-target interaction prediction.

Bioinformatics (Oxford, England)
MOTIVATION: Identifying drug-target interactions (DTIs) is a crucial step in drug repurposing and drug discovery. The significant increase in demand and the expensive nature for experimentally identifying DTIs necessitate computational tools for auto...

Machine learning approaches for assessing medication transfer to human breast milk.

Journal of pharmacokinetics and pharmacodynamics
The human milk/plasma (M/P) drug concentration ratio is crucial in pharmacology, especially for breastfeeding mothers undergoing treatment. It determines the extent to which drugs ingested by the mother pass into breast milk, potentially affecting th...

Application of Deep Learning to Predict the Persistence, Bioaccumulation, and Toxicity of Pharmaceuticals.

Journal of chemical information and modeling
This study investigates the application of a deep learning (DL) model, specifically a message-passing neural network (MPNN) implemented through Chemprop, to predict the persistence, bioaccumulation, and toxicity (PBT) characteristics of compounds, wi...

BoostDILI: Extreme Gradient Boost-Powered Drug-Induced Liver Injury Prediction and Structural Alerts Generation.

Chemical research in toxicology
Over the past 60 years, drug-induced liver injury (DILI) has played a key role in the withdrawal of marketed drugs due to safety concerns. Early prediction of DILI is crucial for developing safer pharmaceuticals, yet current and testing methods are...