AIMC Topic: Pharmaceutical Preparations

Clear Filters Showing 11 to 20 of 491 articles

Drug-Target Affinity Prediction Based on Topological Enhanced Graph Neural Networks.

Journal of chemical information and modeling
Graph neural networks (GNNs) have achieved remarkable success in drug-target affinity (DTA) analysis, reducing the cost of drug development. Unlike traditional one-dimensional (1D) sequence-based methods, GNNs leverage graph structures to capture ric...

Application of Machine Learning and Mechanistic Modeling to Predict Intravenous Pharmacokinetic Profiles in Humans.

Journal of medicinal chemistry
Accurate prediction of new compounds' pharmacokinetic (PK) profile in humans is crucial for drug discovery. Traditional methods, including allometric scaling and mechanistic modeling, rely on parameters from or testing, which are labor-intensive an...

SS-DTI: A deep learning method integrating semantic and structural information for drug-target interaction prediction.

Journal of bioinformatics and computational biology
Drug-target interaction (DTI) prediction is pivotal in drug discovery and repurposing, providing a more efficient alternative to traditional wet-lab experiments by saving time and resources and expediting the identification of potential targets. Curr...

Employing Automated Machine Learning (AutoML) Methods to Facilitate the ADMET Properties Prediction.

Journal of chemical information and modeling
The rationale for using ADMET prediction tools in the early drug discovery paradigm is to guide the design of new compounds with favorable ADMET properties and ultimately minimize the attrition rates of drug failures. Artificial intelligence (AI) in ...

AI-aided chronic mixture risk assessment along a small European river reveals multiple sites at risk and pharmaceuticals being the main risk drivers.

Environment international
The vast amount of registered chemicals leads to a high diversity of substances occurring in the environment and the creation of new substances outpaces chemical risk assessment as well as monitoring strategies. Hence, risk assessment strategies need...

GramSeq-DTA: A Grammar-Based Drug-Target Affinity Prediction Approach Fusing Gene Expression Information.

Biomolecules
Drug-target affinity (DTA) prediction is a critical aspect of drug discovery. The meaningful representation of drugs and targets is crucial for accurate prediction. Using 1D string-based representations for drugs and targets is a common approach that...

Development of hybrid robust model based on computational modeling and machine learning for analysis of drug sorption onto porous adsorbents.

Scientific reports
This study investigates the utilization of three regression models, i.e., Kernel Ridge Regression (KRR), nu-Support Vector Regression ([Formula: see text]-SVR), and Polynomial Regression (PR) for the purpose of forecasting the concentration (C) of a ...

Multitask Deep Learning Models of Combined Industrial Absorption, Distribution, Metabolism, and Excretion Datasets to Improve Generalization.

Molecular pharmaceutics
The optimization of absorption, distribution, metabolism, and excretion (ADME) profiles of compounds is critical to the drug discovery process. As such, machine learning (ML) models for ADME are widely used for prioritizing the design and synthesis o...

PocketDTA: A pocket-based multimodal deep learning model for drug-target affinity prediction.

Computational biology and chemistry
Drug-target affinity prediction is a fundamental task in the field of drug discovery. Extracting and integrating structural information from proteins effectively is crucial to enhance the accuracy and generalization of prediction, which remains a sub...

Enhancing Predictions of Drug Solubility Through Multidimensional Structural Characterization Exploitation.

IEEE journal of biomedical and health informatics
Solubility is not only a significant physical property of molecules but also a vital factor in small-molecule drug development. Determining drug solubility demands stringent equipment, controlled environments, and substantial human and material resou...