Deep Learning for Breast Cancer Risk Prediction: Application to a Large Representative UK Screening Cohort.

Journal: Radiology. Artificial intelligence
Published Date:

Abstract

Purpose To develop an artificial intelligence (AI) deep learning tool capable of predicting future breast cancer risk from a current negative screening mammographic examination and to evaluate the model on data from the UK National Health Service Breast Screening Program. Materials and Methods The OPTIMAM Mammography Imaging Database contains screening data, including mammograms and information on interval cancers, for more than 300 000 female patients who attended screening at three different sites in the United Kingdom from 2012 onward. Cancer-free screening examinations from women aged 50-70 years were performed and classified as risk-positive or risk-negative based on the occurrence of cancer within 3 years of the original examination. Examinations with confirmed cancer and images containing implants were excluded. From the resulting 5264 risk-positive and 191 488 risk-negative examinations, training ( = 89 285), validation ( = 2106), and test ( = 39 351) datasets were produced for model development and evaluation. The AI model was trained to predict future cancer occurrence based on screening mammograms and patient age. Performance was evaluated on the test dataset using the area under the receiver operating characteristic curve (AUC) and compared across subpopulations to assess potential biases. Interpretability of the model was explored, including with saliency maps. Results On the hold-out test set, the AI model achieved an overall AUC of 0.70 (95% CI: 0.69, 0.72). There was no evidence of a difference in performance across the three sites, between patient ethnicities, or across age groups. Visualization of saliency maps and sample images provided insights into the mammographic features associated with AI-predicted cancer risk. Conclusion The developed AI tool showed good performance on a multisite, United Kingdom-specific dataset. Deep Learning, Artificial Intelligence, Breast Cancer, Screening, Risk Prediction ©RSNA, 2024.

Authors

  • Sam Ellis
    From the Department of Scientific Computing (S.E., S.G., M.T., M.D.H.B., N.S.C., P.H., L.M.W.) and National Co-ordinating Centre for the Physics of Mammography (K.C.Y.), Royal Surrey NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, England; and Centre for Vision, Speech and Signal Processing (M.D.H.B.) and Department of Physics (K.C.Y.), University of Surrey, Guildford, England.
  • Sandra Gomes
    From the Department of Scientific Computing (S.E., S.G., M.T., M.D.H.B., N.S.C., P.H., L.M.W.) and National Co-ordinating Centre for the Physics of Mammography (K.C.Y.), Royal Surrey NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, England; and Centre for Vision, Speech and Signal Processing (M.D.H.B.) and Department of Physics (K.C.Y.), University of Surrey, Guildford, England.
  • Matthew Trumble
    From the Department of Scientific Computing (S.E., S.G., M.T., M.D.H.B., N.S.C., P.H., L.M.W.) and National Co-ordinating Centre for the Physics of Mammography (K.C.Y.), Royal Surrey NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, England; and Centre for Vision, Speech and Signal Processing (M.D.H.B.) and Department of Physics (K.C.Y.), University of Surrey, Guildford, England.
  • Mark D Halling-Brown
    From the Department of Scientific Computing (S.E., S.G., M.T., M.D.H.B., N.S.C., P.H., L.M.W.) and National Co-ordinating Centre for the Physics of Mammography (K.C.Y.), Royal Surrey NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, England; and Centre for Vision, Speech and Signal Processing (M.D.H.B.) and Department of Physics (K.C.Y.), University of Surrey, Guildford, England.
  • Kenneth C Young
    Royal Surrey County Hospital, Guildford, UK.
  • Nouman S Chaudhry
    Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, United Kingdom.
  • Peter Harris
    From the Department of Scientific Computing (S.E., S.G., M.T., M.D.H.B., N.S.C., P.H., L.M.W.) and National Co-ordinating Centre for the Physics of Mammography (K.C.Y.), Royal Surrey NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, England; and Centre for Vision, Speech and Signal Processing (M.D.H.B.) and Department of Physics (K.C.Y.), University of Surrey, Guildford, England.
  • Lucy M Warren
    From the Department of Scientific Computing (S.E., S.G., M.T., M.D.H.B., N.S.C., P.H., L.M.W.) and National Co-ordinating Centre for the Physics of Mammography (K.C.Y.), Royal Surrey NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, England; and Centre for Vision, Speech and Signal Processing (M.D.H.B.) and Department of Physics (K.C.Y.), University of Surrey, Guildford, England.