Automated classification of Alzheimer's disease, mild cognitive impairment, and cognitively normal patients using 3D convolutional neural network and radiomic features from T1-weighted brain MRI: A comparative study on detection accuracy.
Journal:
Clinical imaging
Published Date:
Sep 16, 2024
Abstract
OBJECTIVES: Alzheimer's disease (AD) is a common neurodegenerative disorder that primarily affects older individuals. Due to its high incidence, an accurate and efficient stratification system could greatly aid in the clinical diagnosis and prognosis of AD patients. Convolutional neural networks (CNN) approaches have demonstrated exceptional performance in the automated stratification of AD, mild cognitive impairment (MCI) and cognitively normal (CN) participants using MRI, owing to their high predictive accuracy and reliability. Therefore, we aimed to develop an algorithm based on CNN and radiomic features derived from ROIs of bilateral hippocampus and amygdala in brain MRI for stratification between AD, MCI and CN.