Simultaneous quantitative analysis of multiple metabolites using label-free surface-enhanced Raman spectroscopy and explainable deep learning.

Journal: Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PMID:

Abstract

Metabolites serve as vital biomarkers, reflecting physiological and pathological states and offering insights into disease progression and early detection. This study introduces an advanced analytical technique integrating label-free Surface-Enhanced Raman Spectroscopy (SERS) with deep learning, and leverages SHAP (SHapley Additive exPlanations) to provide a visual interpretative analysis of the predictive rationale of the deep learning model, facilitating simultaneous detection and quantitative analysis of multiple metabolites. Monolayer silver nanoparticle SERS substrates were fabricated via a triple-phase interfacial self-assembly method, which captured complex spectral information of target metabolites in mixed solutions. A custom-built deep neural network model with multi-channel feature extraction was employed to predict the concentrations of uric acid (R = 0.976), xanthine (R = 0.971), hypoxanthine (R = 0.977), and creatinine (R = 0.940). The method's scalability was validated as the performance remained consistent with an increasing number of simultaneous targets. This approach offers a sensitive, cost-effective, and rapid alternative for metabolite analysis, with significant implications for clinical diagnostics and personalized medicine.

Authors

  • Xianli Tian
    School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
  • Peng Wang
    Neuroengineering Laboratory, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
  • Guoqiang Fang
    National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450018, China.
  • Xiang Lin
    Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA.
  • Jing Gao
    Department of Gastroenterology 3, Hubei University of Medicine, Renmin Hospital, Shiyan, Hubei, China.