AIMC Topic: Uric Acid

Clear Filters Showing 1 to 10 of 40 articles

A supervised machine learning approach with feature selection for sex-specific biomarker prediction.

NPJ systems biology and applications
Biomarkers are crucial in aiding in disease diagnosis, prognosis, and treatment selection. Machine learning (ML) has emerged as an effective tool for identifying novel biomarkers and enhancing predictive modelling. However, sex-based bias in ML algor...

Multimodal Wearable Sensing for Biomechanics and Biomolecules Enabled by the M-MPM/VCFs@Ag Interface with Machine Learning Pipeline.

ACS sensors
The addition sensing device of sweat to wearable biostress sensors would eliminate the need for using multiple gadgets for healthcare analysis. Due to the distinct package fashion of sensor interface for biostress and biomolecule, achieving permeabil...

Maternal and umbilical cord plasma purine concentrations after oral carbohydrate loading prior to elective Cesarean delivery under spinal anesthesia: a randomized controlled trial.

BMC pregnancy and childbirth
OBJECTIVE: To evaluate the effect of preoperative intake of oral carbohydrates versus standard preoperative fasting prior to elective cesarean delivery on plasma purine levels (hypoxanthine, xanthine, and uric acid) and beta-hydroxybutyrate (β-HB) in...

Tlalpan 2020 Case Study: Enhancing Uric Acid Level Prediction with Machine Learning Regression and Cross-Feature Selection.

Nutrients
Uric acid is a key metabolic byproduct of purine degradation and plays a dual role in human health. At physiological levels, it acts as an antioxidant, protecting against oxidative stress. However, excessive uric acid can lead to hyperuricemia, cont...

Machine learning-based prediction models for renal impairment in Chinese adults with hyperuricaemia: risk factor analysis.

Scientific reports
In hyperuricaemic populations, multiple factors may contribute to impaired renal function. This study aimed to establish a machine learning-based model to identify characteristic factors related to renal impairment in hyperuricaemic patients, determi...

Prediction of insulin resistance using multiple adaptive regression spline in Chinese women.

Endocrine journal
Insulin resistance (IR) is the core for type 2 diabetes and metabolic syndrome. The homeostasis assessment model is a straightforward and practical tool for quantifying insulin resistance (HOMA-IR). Multiple adaptive regression spline (MARS) is a mac...

Developing an interpretable machine learning model for diagnosing gout using clinical and ultrasound features.

European journal of radiology
OBJECTIVE: To develop a machine learning (ML) model using clinical data and ultrasound features for gout prediction, and apply SHapley Additive exPlanations (SHAP) for model interpretation.

Simultaneous quantitative analysis of multiple metabolites using label-free surface-enhanced Raman spectroscopy and explainable deep learning.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Metabolites serve as vital biomarkers, reflecting physiological and pathological states and offering insights into disease progression and early detection. This study introduces an advanced analytical technique integrating label-free Surface-Enhanced...

Predicting the risk of chronic kidney disease based on uric acid concentration in stones using biosensors integrated with a deep learning-based ANN system.

Talanta
Elevated levels of uric acid (UA) in the body may not only lead to the formation of stones but also increase the risk of developing chronic kidney disease (CKD). This study presents a biosensor for detecting UA concentration in stones and a deep lear...

Investigating artificial intelligence models for predicting joint pain from serum biochemistry.

Revista da Associacao Medica Brasileira (1992)
OBJECTIVE: The study used machine learning models to predict the clinical outcome with various attributes or when the models chose features based on their algorithms.