AIMC Topic: Creatinine

Clear Filters Showing 1 to 10 of 114 articles

Machine learning for the prediction of augmented renal clearance (ARC) in patients with sepsis in critical care units.

Scientific reports
This study aims to establish and validate prediction models based on novel machine learning (ML) algorithms for augmented renal clearance (ARC) in critically ill patients with sepsis. Patients with sepsis were extracted from the Medical Information M...

Personalized prediction model generated with machine learning for kidney function one year after living kidney donation.

Scientific reports
Living kidney donors typically experience approximately a 30% reduction in kidney function after donation, although the degree of reduction varies among individuals. This study aimed to develop a machine learning (ML) model to predict serum creatinin...

Development and validation of multi-center serum creatinine-based models for noninvasive prediction of kidney fibrosis in chronic kidney disease.

Renal failure
OBJECTIVE: Kidney fibrosis is a key pathological feature in the progression of chronic kidney disease (CKD), traditionally diagnosed through invasive kidney biopsy. This study aimed to develop and validate a noninvasive, multi-center predictive model...

Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus.

Renal failure
BACKGROUND: Diabetic kidney disease (DKD) is a common and serious complication of diabetic mellitus (DM). More sensitive methods for early DKD prediction are urgently needed. This study aimed to set up DKD risk prediction models based on machine lear...

Risk prediction for acute kidney disease and adverse outcomes in patients with chronic obstructive pulmonary disease: an interpretable machine learning approach.

Renal failure
BACKGROUND: Little is known about acute kidney injury (AKI) and acute kidney disease (AKD) in patients with chronic obstructive pulmonary disease (COPD) and COPD mortality based on the acute/subacute renal injury. This study develops machine learning...

A neural network approach to glomerular filtration rate estimation: a single-centre retrospective audit.

Nuclear medicine communications
OBJECTIVES: The 2009 Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation without race correction factor is frequently used for an estimate of glomerular filtration rate (eGFR) and to support a single-sample GFR regime. This study exa...

Machine Learning to Assist in Managing Acute Kidney Injury in General Wards: Multicenter Retrospective Study.

Journal of medical Internet research
BACKGROUND: Most artificial intelligence-based research on acute kidney injury (AKI) prediction has focused on intensive care unit settings, limiting their generalizability to general wards. The lack of standardized AKI definitions and reliance on in...

Estimation of Ganciclovir Exposure in Adults Transplant Patients by Machine Learning.

The AAPS journal
INTRODUCTION: Valganciclovir, a prodrug of ganciclovir (GCV), is used to prevent cytomegalovirus infection after transplantation, with doses adjusted based on creatinine clearance (CrCL) to target GCV AUC0-24 h of 40-60 mg*h/L. This sometimes leads t...

Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency department.

Scientific reports
Radiocontrast media is a major cause of nephrotoxic acute kidney injury(AKI). Contrast-enhanced CT(CE-CT) is commonly performed in emergency departments(ED). Predicting individualized risks of contrast-associated AKI(CA-AKI) in ED patients is challen...