AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Creatinine

Showing 1 to 10 of 109 articles

Clear Filters

Assessment of Serum Creatinine and Serum Sodium Prognostic Potential in Heart Failure Patients Using Machine Learning.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Heart failure (HF) is the leading etiology for hospital admissions and ranks among the foremost contributors to mortality. This complex clinical syndrome with various phenotypes is categorized by left ventricle ejection fraction levels (LVEF), namely...

Estimation of Ganciclovir Exposure in Adults Transplant Patients by Machine Learning.

The AAPS journal
INTRODUCTION: Valganciclovir, a prodrug of ganciclovir (GCV), is used to prevent cytomegalovirus infection after transplantation, with doses adjusted based on creatinine clearance (CrCL) to target GCV AUC0-24 h of 40-60 mg*h/L. This sometimes leads t...

Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency department.

Scientific reports
Radiocontrast media is a major cause of nephrotoxic acute kidney injury(AKI). Contrast-enhanced CT(CE-CT) is commonly performed in emergency departments(ED). Predicting individualized risks of contrast-associated AKI(CA-AKI) in ED patients is challen...

A recursive embedding and clustering technique for unraveling asymptomatic kidney disease using laboratory data and machine learning.

Scientific reports
Traditional methods for diagnosing chronic kidney disease (CKD) via laboratory data may not be capable of identifying early kidney disease. Kidney biopsy is unsuitable for regular screening, and imaging tests are costly and time-consuming. Several st...

Machine Learning to Assist in Managing Acute Kidney Injury in General Wards: Multicenter Retrospective Study.

Journal of medical Internet research
BACKGROUND: Most artificial intelligence-based research on acute kidney injury (AKI) prediction has focused on intensive care unit settings, limiting their generalizability to general wards. The lack of standardized AKI definitions and reliance on in...

Development and validation of multi-center serum creatinine-based models for noninvasive prediction of kidney fibrosis in chronic kidney disease.

Renal failure
OBJECTIVE: Kidney fibrosis is a key pathological feature in the progression of chronic kidney disease (CKD), traditionally diagnosed through invasive kidney biopsy. This study aimed to develop and validate a noninvasive, multi-center predictive model...

Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus.

Renal failure
BACKGROUND: Diabetic kidney disease (DKD) is a common and serious complication of diabetic mellitus (DM). More sensitive methods for early DKD prediction are urgently needed. This study aimed to set up DKD risk prediction models based on machine lear...

Risk prediction for acute kidney disease and adverse outcomes in patients with chronic obstructive pulmonary disease: an interpretable machine learning approach.

Renal failure
BACKGROUND: Little is known about acute kidney injury (AKI) and acute kidney disease (AKD) in patients with chronic obstructive pulmonary disease (COPD) and COPD mortality based on the acute/subacute renal injury. This study develops machine learning...

Machine learning based clinical decision tool to predict acute kidney injury and survival in therapeutic hypothermia treated neonates.

Scientific reports
Therapeutic hypothermia (TH) significantly reduces mortality and morbidities in neonates with Neonatal Encephalopathy (NE). NE may result in neonatal death and multisystem organ impairment, including acute kidney injury (AKI). Our study aimed to util...