Machine learning in personalized laryngeal cancer management: insights into clinical characteristics, therapeutic options, and survival predictions.
Journal:
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
PMID:
39714621
Abstract
PURPOSE: Over the last 40 years, there has been an unusual trend where, even though there are more varied treatments, survival rates have not improved much. Our study used survival analysis and machine learning (ML) to investigate this odd situation and to improve prediction methods for treating non-metastatic LSCC.