Journal of chemical information and modeling
Jun 9, 2025
Patients with locally advanced laryngeal and hypopharyngeal squamous cell carcinoma (LA-LHSCC) urgently need precise treatment strategies to improve the prognosis due to severe laryngeal functional impairment following traditional surgery and chemora...
BACKGROUND: Laryngeal cancer (LCA) is the second most common type of head and neck malignancy, characterized by high recurrence rates and poor overall survival (OS). However, progress in curing LCA through molecular-targeted diagnostics and therapies...
PURPOSE: Despite the development of diverse treatment options, there has been an increase in mortality rates for laryngeal squamous cell carcinoma (LSCC). Our research employed survival analysis and machine learning (ML) techniques to evaluate the im...
Data scarcity in medical images makes transfer learning a common approach in computer-aided diagnosis. Some disease classification tasks can rely on large homogeneous public datasets to train the transferred model, while others cannot, i.e., endoscop...
International journal of radiation oncology, biology, physics
Jan 7, 2025
PURPOSE: Deep learning is a promising approach to increase reproducibility and time-efficiency of gross tumor volume (GTV) delineation in head and neck cancer, but model evaluation primarily relies on manual GTV delineations as reference annotation, ...
BACKGROUND: The early diagnosis of glottic laryngeal cancer is the key to successful treatment, and machine learning (ML) combined with narrow-band imaging (NBI) laryngoscopy provides a new idea for the early diagnosis of glottic laryngeal cancer.
OBJECTIVE: This preliminary study tested whether non-invasive, remote Elastic Scattering Spectroscopy (ESS) measurements obtained in the oral cavity can be used as a proxy to accurately differentiate between patients with laryngeal cancer versus lary...
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
Dec 23, 2024
PURPOSE: Over the last 40 years, there has been an unusual trend where, even though there are more varied treatments, survival rates have not improved much. Our study used survival analysis and machine learning (ML) to investigate this odd situation ...
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
Nov 22, 2024
OBJECTIVE: The objective of this systematic review and meta-analysis was to evaluate the diagnostic accuracy of AI-assisted technologies, including endoscopy, voice analysis, and histopathology, for detecting and classifying laryngeal lesions.
BACKGROUND: The early diagnosis of laryngeal cancer (LCA) is crucial for prognosis, driving our search for an accurate, precise, and sensitive deep learning model to assist in LCA detection.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.