Accuracy of Fully Automated and Human-assisted Artificial Intelligence-based CT Quantification of Pleural Effusion Changes after Thoracentesis.

Journal: Radiology. Artificial intelligence
PMID:

Abstract

Quantifying pleural effusion change at chest CT is important for evaluating disease severity and treatment response. The purpose of this study was to assess the accuracy of artificial intelligence (AI)-based volume quantification of pleural effusion change on CT images, using the volume of drained fluid as the reference standard. Seventy-nine participants (mean age ± SD, 65 years ± 13; 47 male) undergoing thoracentesis were prospectively enrolled from October 2021 to September 2023. Chest CT scans were obtained just before and after thoracentesis. The volume of pleural fluid on each CT scan, with the difference representing the drained fluid volume, was measured by automated segmentation (fully automated measurement). An expert thoracic radiologist then manually corrected these automated volume measurements (human-assisted measurement). Both fully automated (median percentage error, 13.1%; maximum estimated 95% error, 708 mL) and human-assisted measurements (median percentage error, 10.9%; maximum estimated 95% error, 312 mL) systematically underestimated the volume of drained fluid, beyond the equivalence margin. The magnitude of underestimation increased proportionally to the drainage volume. Agreements between fully automated and human-assisted measurements (intraclass correlation coefficient [ICC], 0.99) and the test-retest reliability of fully automated (ICC, 0.995) and human-assisted (ICC, 0.997) measurements were excellent. These results highlight a potential systematic discrepancy between AI segmentation-based CT quantification of pleural effusion volume change and actual volume change. CT-Quantitative, Thorax, Pleura, Segmentation Clinical Research Information Service registration no. KCT0006683 © RSNA, 2025.

Authors

  • Eui Jin Hwang
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).
  • Hyunsook Hong
    Medical Research Collaborating Center, Seoul National University Hospital, Seoul, South Korea.
  • Seungyeon Ko
    From the Department of Radiology (E.J.H., S.K., H.K., D.K., S.H.Y.) and Medical Research Collaborating Center (H.H.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; Department of Radiology, Seoul National University College of Medicine (E.J.H., H.K., S.H.Y.), Seoul, Korea; Department of Radiology, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Korea (S.J.Y.).
  • Seung-Jin Yoo
    Radiology, Hanyang University Medical Center and College of Medicine, Seoul, 04763, Republic of Korea.
  • Hyungjin Kim
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).
  • Dahee Kim
    Department of Otorhinolaryngology, Yonsei University, Seoul, Republic of Korea.
  • Soon Ho Yoon
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).