Machine learning-based prediction model integrating ultrasound scores and clinical features for the progression to rheumatoid arthritis in patients with undifferentiated arthritis.
Journal:
Clinical rheumatology
PMID:
39789318
Abstract
OBJECTIVES: Predicting rheumatoid arthritis (RA) progression in undifferentiated arthritis (UA) patients remains a challenge. Traditional approaches combining clinical assessments and ultrasonography (US) often lack accuracy due to the complex interaction of clinical variables, and routine extensive US is impractical. Machine learning (ML) models, particularly those integrating the 18-joint ultrasound scoring system (US18), have shown potential to address these issues but remain underexplored. This study aims to evaluate ML models integrating US18 with clinical data to improve early identification of high-risk patients and support personalized treatment strategies.