Design and implementation of an independent-drive bionic dragonfly robot.
Journal:
Bioinspiration & biomimetics
PMID:
39946845
Abstract
Bionic flapping wing robots achieve flight by imitating animal flapping wings, which are safe, flexible, and efficient. Their practicality and human-machine symbiosis in narrow and complex environments are better than traditional fixed-wing or multirotor drones, indicating broader application potential. By systematic and biomimetic methods, a bionic dragonfly robot with four independent drive flapping wings, called DFly-I, was designed. Firstly, the mechanical structure of the robot was introduced, especially the fluttering structure and the wing structure. Then, a novel motion controller utilizing multi-channel field-oriented control (FOC) is proposed for its motion mechanism, which relies on four sets of brushless DC motors based on FOC control and four sets of servos to achieve independent control of the flapping speed, rhythm, and angle of the four flapping wings. In addition, the system model is analyzed, and based on this, the robot motion and posture control are realized by a proportional-integral-derivative and active disturbance rejection based controller. Lastly, a physical prototype was made, and its feasibility was verified through flight experiments in indoor venues.