Integrated analysis of gene expressions and targeted mirnas for explaining crosstalk between oral and esophageal squamous cell carcinomas through an interpretable machine learning approach.

Journal: Medical & biological engineering & computing
PMID:

Abstract

This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanced with interpretable machine learning (IML) through SHapley Additive exPlanations (SHAP), we analyzed gene expression from two GEO datasets (GSE30784 and GSE44021). The GSE30784 dataset comprises 167 OSCC samples and 45 control group, whereas the GSE44021 dataset encompasses 113 ESCC samples and 113 control group. Our analysis led to identification of 20 key genes, such as XBP1, VGLL1, and RAD1, which are significantly associated with development of ESCC and OSCC. Further investigations were conducted using tools like NetworkAnalyst 3.0, Single Cell Portal, and miRNET 2.0, which highlighted complex interactions between these genes and specific miRNA targets including hsa-mir-124-3p and hsa-mir-1-3p. Our model achieved high precision in identifying genes linked to crucial processes like programmed cell death and cancer pathways, suggesting new avenues for diagnosis and treatment. This study confirms the bidirectional relationship between OSCC and ESCC, laying groundwork for targeted therapeutic approaches. This study helps to identify shared biological pathways and genetic factors of these conditions for designing personalized medicine strategies and to improve disease management.

Authors

  • Khushi Yadav
    Department of Biotechnology, Delhi Technological University (DTU), Delhi, 110042, India.
  • Yasha Hasija