IT: An interpretable transformer model for Alzheimer's disease prediction based on PET/MR images.

Journal: NeuroImage
PMID:

Abstract

Alzheimer's disease (AD) represents a significant challenge due to its progressive neurodegenerative impact, particularly within an aging global demographic. This underscores the critical need for developing sophisticated diagnostic tools for its early detection and precise monitoring. Within this realm, PET/MR imaging stands out as a potent dual-modality approach that transforms sensor data into detailed perceptual mappings, thereby enriching our grasp of brain pathophysiology. To capitalize on the strengths of PET/MR imaging in diagnosing AD, we have introduced a novel deep learning framework named "IT", which is inspired by the Transformer architecture. This innovative model adeptly captures both local and global characteristics within the imaging data, refining these features through advanced feature engineering techniques to achieve a synergistic integration. The efficiency of our model is underscored by robust experimental validation, wherein it delivers superior performance on a host of evaluative benchmarks, all while maintaining low demands on computational resources. Furthermore, the features we extracted resonate with established medical theories regarding feature distribution and usage efficiency, enhancing the clinical relevance of our findings. These insights significantly bolster the arsenal of tools available for AD diagnostics and contribute to the broader narrative of deciphering brain functionality through state-of-the-art imaging modalities.

Authors

  • Zhaomin Yao
    BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, Jilin, China.
  • Weiming Xie
    Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China.
  • Jiaming Chen
    Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
  • Ying Zhan
    Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China.
  • Xiaodan Wu
    Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China.
  • Yingxin Dai
    College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
  • Yusong Pei
    College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China; Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
  • Zhiguo Wang
    Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, 110169, Liaoning, China.
  • Guoxu Zhang
    Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China. Electronic address: zhangguoxu_502@163.com.