Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning.

Journal: Scientific reports
PMID:

Abstract

Atherosclerosis is the major cause of cardiovascular diseases worldwide, and AIDS linked with chronic inflammation and immune activation, increases atherosclerosis risk. The application of bioinformatics and machine learning to identify hub genes for atherosclerosis and AIDS has yet to be reported. Thus, this study aims to identify the hub genes for atherosclerosis and AIDS. Gene expression profiles were downloaded from the Gene Expression Omnibus database. The Robust Multichip Average was performed for data preprocessing, and the limma package was used for screening differentially expressed genes. Enrichment analysis employed GO and KEGG, protein-protein interaction network was constructed. Hub genes were filtered using topological and machine learning algorithms and validated in external cohorts. Then immune infiltration and correlation analysis of hub genes were constructed. Nomogram, receiver operating curve, and single-sample gene set enrichment analysis were applied to evaluate hub genes. This study identified 48 intersecting genes. Enrichment analyses indicated that these genes are significantly enriched in viral response, inflammatory response, and cytokine signaling pathways. CCR5 and OAS1 were identified as common hub genes in atherosclerosis and AIDS for the first time, highlighting their roles in antiviral immunity, inflammation and immune infiltration. These findings contributed to understanding the shared pathogenesis of Atherosclerosis and AIDS and provided possible potential therapeutic targets for immunomodulatory therapy.

Authors

  • Qirui Zheng
    Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China.
  • Yupeng Wu
    Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China.
  • Xiaojiao Zhang
    School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
  • Yuzhu Zhang
    School of Metallurgy, Northeastern University, Shenyang 110819, China.
  • Zaihan Zhu
    Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China.
  • Bo Luan
    Department of Cardiology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
  • Peizhuo Zang
    Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China. d10@lnph.com.
  • Dandan Sun
    School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China. lsrzzdx@zzu.edu.cn.